Rapid maxillary expansion on the permanent teeth versus the deciduous teeth: Comparison of skeletal and dentoalveolar effects by volumetric tomography

Lombardo Luca*, Albertini Enrico, Arreghini Angela, D’Alessandro Angela Chiara, Siciliani Giuseppe

Department of Orthodontics, Postgraduate School of Orthodontics of Ferrara, University of Ferrara, Ferrara, Italy

ABSTRACT

Background: The aim of this study was to evaluate skeletal and dentoalveolar effects of rapid maxillary expansion (RME) on the permanent and deciduous teeth by means of volumetric tomography.

Methods: The sample included 12 patients with transverse maxillary hypoplasia (6 treated with RME on the permanent first molars, 6 treated with RME on the deciduous second molars) in the mixed-dentition phase. Beginning and postexpansion cone beam computed tomography images were compared for analysis of the skeletal and dentoalveolar effects of the two devices.

Results: RME treatment significantly increased the palatal volume in both groups (by 10.78% with RME on the permanent teeth vs. by 9.89% with RME on the deciduous teeth). Intermolar width increased for both skeletal and dental measurements. First upper molar tipping was greater on the first permanent molars when RME was anchored on the deciduous teeth than when anchored on the permanent teeth (4.02° vs 2.13°). Decompensation of the lower molars was greater in patients treated with RME on the permanent teeth than on the deciduous teeth (4.58° vs. 1.71°).

Conclusions: RME treatment significantly increased palatal volume. RME anchored on the permanent teeth determined greater dental intermolar width variation and a significant difference in decompen-sation of the lower molars. RME anchored on the deciduous teeth was more effective in increasing skeletal intermolar width and inclination of the first molars.

1. Introduction

Rapid maxillary expansion (RME) is the most common treatment employed for the correction of transverse maxillary hypoplasia. Orthopedic maxillary expansion is the result of skeletal (sutural openings), dental (tipping), and alveolar (bending and remodeling) changes. Many researchers have demonstrated its benefits in terms of posterior crossbite resolution [1], breathing improvement [2], and prognosis amendment of permanent teeth retention [3]. Side effects of maxillary expansion include dental extrusion and tipping [4], opening of the bite, and gingival recessions [5–7].

Many studies have shown the effectiveness of maxillary expansion on both skeletal and dental structures. Prior research [8–12] utilized dental casts and two-dimensional lateral and posteroanterior cephalography. Although those studies were able to highlight changes with two-dimensional measures, a three-dimensional evaluation of the dentoskeletal changes is now requested.

The diffusion of cone beam computed tomography (CBCT) has allowed for the study of the variations in oropharyngeal airway volume [13], suture opening [14], radicular resorption [15], and variation of palatal volume [16].

The aim of this study was to assess the dentoalveolar and skeletal effects of RME anchored on either the permanent or the deciduous teeth by means of CBCT.

2. Methods and materials

A sample of 53 patients actively treated at the School of Specialization in Orthodontics (University of Ferrara, Ferrara, Italy) for the correction of transverse maxillary hypoplasia was submitted to the following inclusion criteria: unique treatment with RME,
mixed-dentition phase, and the availability of pretreatment (T₀) CBCT.

The final sample was made up of 12 patients, 6 treated with RME on the deciduous second molars (9 female, 4 male; mean age, 9 years and 4 months) and 6 treated with RME on the permanent first molars (3 female, 1 male; mean age, 10 years and 1 month).

CBCT was repeated after an interval of 10 months (T₁), 1 month of active phase and 9 months of retention.

The Hyrax type “new REP” [17] was cemented either on the upper deciduous second molars or on the permanent first molars, depending on the availability of root support (Fig. 1).

The expansion protocol included one activation per day (0.2 mm) until the achievement of a slight hypercorrection, with the upper palatal cusps in contact with the lower buccal cusps.

A NewTom 3G VGI (QR S.r.l., Verona, Italy) was employed to obtain a scan using an effective dose (50.2 mL) of sievert [18,19]. The settings were the following: field of view, 12 in; 110 kV (AP-LL); 2.00 mA (AP) and 1.00 mA (LL); exposure time, 5.4 seconds; and section thickness, 0.50 mm. The Osirix version 3.9.1 software (Pixmeo, Geneva, Switzerland) was used to perform linear and bidimensional measures and volumetric reconstruction.

All measures were classified as volumetric, skeletal, or dental.

2.1. Volumetric measures

2.1.1. Palatal volume

Areas were created on consecutive coronal slices, using the cementoenamel junction (CEJ) as the vertical reference and the posterior nasal spine (PNS) as the posterior one. All of the areas were summed to obtain palatal volume by means of Osirix (Fig. 2).

2.1.2. Space volume between lower first molars (volumetric evaluation of inferior molar decompensation)

Areas were created on five consecutive slices between the lower first molars, using lingual dental surfaces and mandibular inner cortical bone as references. All of the areas were summed to obtain palatal volume by means of Osirix (Fig. 3).

2.2. Skeletal measures

Transverse upper skeletal diameter was measured on axial slices at the canine (apex) and the first molar (mesiovestibular root apex) levels to the end of the buccal cortical bone (Fig. 4).

Mandibular alveolar bone thickness was measured both at the apex and furcation height as the distance between the external cortical bone and the inner one (Fig. 5).

Anterior nasal spine (ANS)-PNS was the distance between the ANS and the PNS, as measured on the sagittal slices. Palatal vault height was measured on the sagittal slices using as a reference a line passing at the central incisor CEJ and parallel to the bispinal plane (Fig. 6).

2.3. Dental measures

Dental measures included the inclination of the first upper molars with respect to the nasal base horizontal plane (inner angle) and of the first lower molars with respect to the nasal base horizontal plane (inner angle) (Fig. 7). The intercanine distance was measured on the axial slices at the apex and crown tip height (Fig. 8). Intermolar distance was measured on the axial slices at the palatal root apex and crown height (center of palatal surface) (Fig. 9). The right upper central incisor–PNS (projection) was...
measured on the sagittal slices at the apex, CEJ, and margin height (Fig. 10). The right upper molar—PNS (projection) was measured on
the sagittal slices at the distovestibular root apex, CEJ, and distal
cusp height (Fig. 11).

2.4. Statistical analysis

Data were examined with SPSS version 18.0 software (SPSS Inc.,
Chicago, IL). Statistical analysis was carried out with the Mann-
Whitney U test for comparisons of the two unrelated groups. The
Student’s t test for paired data was used for the comparison of pre-
and post-treatment values. The significance level was set at 0.05.

3. Results and discussion

All of the results are reported in Tables 1–4. Group I refers to
patients with RME anchored on the permanent first molars; group
II refers to patients with RME anchored on the deciduous
second molars.

3.1. Volumetric measures

Palatal volume increased between T0 and T1 by about 10.78%
\(P = .004 \) in group I and by about 9.89% in group II. Space volume
between the lower first molars perceived a 17.19% reduction in
group I and a 27.71% \(P < .0001 \) reduction in group II.

3.2. Skeletal measures

Transverse skeletal diameter at the canine increased from 3.593
to 3.662 cm in group I and from 3.823 to 3.867 cm in group II. Transverse skeletal diameter at the first molar increased from 5.769
to 5.804 cm in group I and from 5.167 to 5.730 cm \(P = .028 \) in
group II.

Regarding mandibular alveolar bone thickness, decreases were
recorded: \(-1.0\%\), on average, in group I and \(-1.0\%\), on average, in
group II.

Measures on the sagittal slices revealed increases in ANS-PNS of
0.085 cm in group I \(P = .056 \) and 0.174 cm in group II. Palatal vault
height increased by 0.071 cm in group I and by 0.090 cm in group II.

3.3. Dental measures

Inclination of the upper first molars increased to extents of 2.13\(^\circ \)
on average, in group I and 4.02\(^\circ \), on average, in group II.

The lower first molars showed reductions of 4.58\(^\circ \), on average,
with reference to group I, and 1.77\(^\circ \), on average, with respect to
group II.

Intercanine distance regarding apex measures showed increases
equal to 0.127 cm in group I and 0.103 cm in group II. At tip, vari-
ations were 0.364 cm in group I \(P = .011 \) and 0.073 cm in group II.

Intermolar distances, regarding apex measures, were increased
by 0.395 cm in group I \(P = .007 \) and by 0.090 cm in group II.

Sagittally, the distance between the right upper central incisor
and PNS showed variations of \(+0.050\), \(+0.002\), and \(-0.026\) cm at the
 apex, CEJ, and crown, respectively, in group I and \(+0.163\), \(+0.311\)
\(P = .021 \), and \(+0.429\) cm in group II \(P = .001 \).
Sagittally, the distances between the right upper molar and PNS were increased by 0.111, 0.153, and 0.064 cm at the distovestibular root apex, CEJ, and distal cusp tip, respectively, in group I and by 0.216 (P = .004), 0.403 (P = .021), and 0.404 cm (P = .012) in group II.

The aim of this research was to evaluate and compare the three-dimensional effects of RME when used on the permanent and deciduous teeth.

The accuracy of linear and volumetric measurements obtained by CBCT has been demonstrated by many authors [20,21]. Because stable reference planes for the comparison CBCT measurements do not exist, the bispinal plane and hard palate base were chosen for sagittal and coronal values, respectively.

The second CBCT was repeated 10 months after the insertion of the two appliances; this interval was chosen estimating 1 month for the activation of RME and 9 months for the stabilization of RME. Intermediate lapse resulted in greater treatment duration (12.7 months, on average) considering that some patients started the treatment a few months after the first volumetric tomography. Some variations should be imputed to the growth during this period, although the extent is assessable as nonsignificant [22,23].

The type of expander employed was a Veltri “new REP” [17], without palatal arms to allow for the examination of the skeletal effects and to avoid distortions determined by tipping action on the adjacent teeth.

In the considered interval, a significant palatal volume increase was achieved in both groups. The amount was increased when RME was anchored on the permanent teeth (by 10.78% vs. 9.89%, on average).

Enhancements were less in both groups compared with that obtained by Gohl et al. [16] (21.7%), but that research examined a younger group of patients.

 Inferior decompensation volume was reduced in both groups, probably as a consequence of the mesial first molar migration during trade-tooth. Inferior decompensation was greater when RME was anchored to the permanent teeth. This result can be ascribed to the greater amount of expansion relative to the upper first molars when they are used as anchorage elements.

Tipping movement of the upper first molars was increased in both groups. This outcome was not only an orthopedic but also a dentoalveolar RME effect. According to the study of McNamara et al., buccal tipping of the upper first molars after RME expresses in a range between 0° and 24° [24]. Recently, Kartalian et al. [25] noticed that dentoalveolar buccal tipping after RME treatment was principally determined by an alveolar bending. In our study, in agreement with Kartalian, it is possible to conclude that the greater tipping found in both groups is referable to the alveolar bending created by RME action [26].

Upper molar inclination increased more in group II (RME anchored on the deciduous teeth) compared with group I (RME anchored on the permanent teeth). Because in group I the first molars were not RME anchorage units, the increase registered must have been due to alveolar bending.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group I: RME anchored on first permanent molars (n = 6)</th>
<th>Group II: RME anchored on second deciduous molars (n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>SD</td>
<td>SE</td>
</tr>
<tr>
<td>Volume</td>
<td>9.351</td>
<td>1.915</td>
</tr>
<tr>
<td>T1</td>
<td>10.479</td>
<td>1.663</td>
</tr>
<tr>
<td>Variation</td>
<td>+1.128</td>
<td>0.563</td>
</tr>
<tr>
<td>Lower molar space volume</td>
<td>1.574</td>
<td>0.293</td>
</tr>
<tr>
<td>T1</td>
<td>1.303</td>
<td>0.194</td>
</tr>
<tr>
<td>Variation</td>
<td>−0.271</td>
<td>0.324</td>
</tr>
</tbody>
</table>

Values are cm³. P < .001.
explained considering the lesser interdigitation of the suture when

Axial measurements evidenced a minimal transverse skeletal diameter increase at the canine (0.07 cm in group I and 0.05 cm in group II), whereas at the molar the enhancement was statistically significant only when RME was anchored on the deciduous teeth (0.56 cm).

The greater skeletal transverse effect obtained in group II can be explained considering the lesser interdigitation of the suture when patients are at an earlier age and the higher number of activations required to reach hypercorrection when the RME is anchored on the deciduous second molars.

Statistically nonsignificant increases in the intercanine dental distance at the apex level were recorded in both groups, whereas at the cusp level, the increase was relevant when RME was anchored on the permanent first molars.

The distance between the upper right central incisor and PNS perpendicular, measured on three levels, was enhanced. The variations were greater in group II at all heights considered. In both groups, the increases obtained could be linked to point A advancement after the maxillary expansion [28] and to the maxillary complex growth influence.
Similarly, the distance between the upper first molar and PNS perpendicular increased.

There is no agreement in the scientific literature about RME effects with respect to palatal height [16,29].

In our study, although the method was the same as the one used by Gohl et al. [16], a variation in palatal vault height was recorded, with enhancements of 0.071 cm in group I and 0.090 cm in group II. We can conclude that RME has a minimal influence on palatal vault height increment.

4. Conclusions

In our sample, RME treatment after 10 months was associated with significantly increased palatal volume in both groups. It also permits a statistically significant increase in intermolar diameter, resulting in the best choice for posterior crossbite resolution. RME anchored on the deciduous teeth led to a greater intermolar dental variation. Upper molar buccal tipping was increased in both groups, but it was greater when RME was anchored on the deciduous teeth, as a consequence of an alveolar bending effect. Lower molar decompensation was more effective when RME was anchored on the permanent teeth.

References